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Ebola viruses (EBOVs) cause rare but highly fatal outbreaks of viral
hemorrhagic fever in humans, and approved treatments for these
infections are currently lacking. The Ebola VP35 protein is multi-
functional, acting as a component of the viral RNA polymerase
complex, a viral assembly factor, and an inhibitor of host interferon
(IFN) production. Mutation of select basic residues within the
C-terminal half of VP35 abrogates its dsRNA-binding activity,
impairs VP35-mediated IFN antagonism, and attenuates EBOV
growth in vitro and in vivo. Because VP35 contributes to viral
escape from host innate immunity and is required for EBOV
virulence, understanding the structural basis for VP35 dsRNA
binding, which correlates with suppression of IFN activity, is of
high importance. Here, we report the structure of the C-terminal
VP35 IFN inhibitory domain (IID) solved to a resolution of 1.4 Å and
show that VP35 IID forms a unique fold. In the structure, we
identify 2 basic residue clusters, one of which is important for
dsRNA binding. The dsRNA binding cluster is centered on Arg-312,
a highly conserved residue required for IFN inhibition. Mutation of
residues within this cluster significantly changes the surface elec-
trostatic potential and diminishes dsRNA binding activity. The
high-resolution structure and the identification of the conserved
dsRNA binding residue cluster provide opportunities for antiviral
therapeutic design. Our results suggest a structure-based model
for dsRNA-mediated innate immune antagonism by Ebola VP35
and other similarly constructed viral antagonists.

crystal structure � Ebola virus � RNA binding

Ebola viruses (EBOVs) cause severe hemorrhagic fever char-
acterized by fever, shock, coagulation defects, and impaired

immunity (1, 2). These manifestations of infection are thought
to reflect subversion of the innate immune system coupled with
uncontrolled viral replication, particularly in macrophages and
dendritic cells (3, 4). EBOV infection of these cells enhances
production of proinflammatory cytokines, such as TNF-� and
IFN (IFN)-�, and diminishes stimulation of T cell maturation by
dendritic cells (3, 4). Like other negative-strand RNA viruses
that impair both innate and adaptive immunity (e.g., influenza,
rabies, and measles), EBOV suppresses host IFN activities to
replicate, thus resulting in serious disease (5, 6). Only individuals
who survive EBOV infection show appreciable amounts of
viral-specific antibodies (7), suggesting that EBOV infections
lead to shutdown of early immune responses and prevent acti-
vation of adaptive immune responses.

Recognition of viral particles and viral RNA, including RNA
modifications such as 5�-triphosphate (5�-ppp), by cytosolic
pattern recognition receptor helicases RIG-I and MDA-5 leads
to activation of transcription factors, including IFN regulatory
factor-3 (IRF-3), IRF-7, NF-�B, and AP-1 (8–12). These tran-
scription factors in turn induce expression of a large number of
cytokines, such as IFN-� and IFN-� (13). Activated IFN genes
operate in both autocrine and paracrine manners to stimulate the
activity of additional antiviral genes. Therefore, inhibition of
signaling mechanisms that promote IFN responses is a necessary

viral countermeasure against the host antiviral system and
critical for viral propagation (2).

Ebola viral protein 35 (VP35) is multifunctional, serving as a
component of the viral RNA polymerase complex, as a struc-
tural/assembly factor, and as a suppressor of host IFN responses
(2). Therefore, a functional VP35 is required for efficient viral
replication and pathogenesis; knockdown of VP35 leads to
reduced viral amplification and reduced lethality in infected
mice (14–18). However, limited information is available regard-
ing how VP35 is able to perform multiple functions. VP35
contains an N-terminal coiled-coil domain required for its
oligomerization (19, 20) and a C-terminal dsRNA-binding re-
gion (15, 16, 21). Oligomerization through the N-terminal oli-
gomerization domain is required for virus replication because
oligomerization-defective mutants fail to interact with the viral
polymerase (L) protein (15, 22). Similarly, deletion of the
N-terminal region or mutation of the coiled-coil domain abro-
gates IFN suppression by VP35, which can be overcome by
tethering a heterologous oligomerization module to the VP35 C
terminus or overexpression of the isolated VP35 C terminus (20).
The latter observations suggest a model where the coiled-coil
domain provides a critical oligomerization function, whereas the
C-terminal region of VP35 interacts with host factors to block
signaling that triggers IFN responses.

The host factor(s) directly targeted by VP35 have not been
definitively identified. Only VP35, and not any other Ebola
protein, supports viral growth of a mutant influenza A virus that
lacks the IFN suppressor protein NS1A, suggesting that VP35
also inhibits IFN activity (23). A bioinformatics study identified
an 8-residue motif in VP35 that has 75% sequence identity to the
influenza NS1A protein, including basic residues essential for
binding of dsRNA by NS1 (21). Mutation of these residues
impaired NS1A inhibition of IFN responses (24). Based on this
identity, it was suggested that this motif could also be required
for inhibition of IFN responses by VP35 (21). Consistent with
these observations, VP35 inhibits phosphorylation, activation,
and nuclear localization of IRF-3 and inhibits viral- and dsRNA-
induced expression of the IFN� gene (14, 17, 18, 21, 25, 26).
VP35 also inhibits activation of the cellular antiviral kinase
RNA-dependent protein kinase (PKR) (16) and activation of the
RNAi pathway (27). These pathways are similarly targeted by
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other virus-encoded dsRNA-binding proteins. Examples include
the influenza virus NS1A protein, the reovirus �3 protein (28),
and the vaccinia virus E3L protein (29), which can inhibit host
antiviral responses through dsRNA-dependent and -indepen-
dent mechanisms.

The mechanism by which VP35 inhibits IRF-3 activation and
IFN�/� expression is not completely understood, but thus far,
VP35 IFN-antagonist function correlates with VP35 dsRNA
binding activity. EBOV likely activates the RIG-I pathway (15,
25) and VP35 expression inhibits the RIG-I activated signaling
pathway (15). Because coexpression of VP35 can inhibit activa-
tion of IFN� gene expression by overexpressed IKK� or TBK-1,
it appears that VP35 may target these kinases to exert its
inhibitory effect, although additional mechanisms directed at
more upstream points in these pathways cannot be excluded.
Indeed, mutation of basic residues such as Arg-312 to alanine
(Arg312Ala) severely impairs VP35 dsRNA binding and IFN-
antagonist activity, but does not significantly affect VP35 func-
tion as part of the viral polymerase complex (15, 17, 21, 25).
Viruses containing the Arg312Ala mutation more readily acti-
vate IRF-3, compared with a wild-type virus, and induce a much
stronger innate immune response than wild-type virus. Taken
together, these data correlate dsRNA binding with the inability
of the Arg312Ala mutant virus to support viral growth because
of aberrant IFN inhibition (22, 25). Strikingly, an Arg312Ala
VP35 mutant EBOV is greatly attenuated relative to the wild-
type virus in mice (25).

These data suggest that the dsRNA binding activity mediated
by the C terminus of VP35 is critical for viral suppression of
innate immunity and for virulence (14, 25). Yet, the structure of
the VP35 C terminus has not been available, and it is not clear
how individual mutations impair dsRNA binding and suppress
innate immune signaling. As an initial step toward addressing
these questions, we conducted a structural and biochemical
analysis of the C-terminal region of Ebola VP35. Here, we report
the 3-dimensional structure of the VP35 IFN inhibitory domain
(IID) solved by X-ray crystallography and identify residues
important for RNA binding. Our structure reveals a unique fold
that binds dsRNA. Examination of the VP35 IID structure
reveals 2 basic patches that are highly conserved among mem-
bers of the Filoviridae family (identical among EBOV isolates).
Biochemical and NMR-based structural analyses show that one
patch contains residues that are required for dsRNA binding and
IFN inhibition, whereas the functional significance of the other
basic patch remains unknown. Although the structure of VP35
IID is significantly different from that of influenza NS1A
RNA-binding domain (RBD), the basic side chains at the dimer
interface of the NS1A RBD and those located near Arg-312 in
VP35 IID are positioned to form contiguous basic patches,
suggesting that NS1A and VP35 may interact with dsRNA in a
similar manner. Our results provide structural insights into the
role of conserved residues in dsRNA binding that are required
for full EBOV virulence and suggest a model for RNA-
dependent Ebola VP35 functions.

Results
Crystal Structure of EBOV VP35 Was Solved to High Resolution. Using
NMR-based studies, we identified the minimal structured region
from the C terminus of Ebola VP35 IID and the crystal structure
of VP35 IID was solved to 1.4-Å resolution (Fig. 1B and C). In
the crystal, there are 2 nearly identical monomers (A and B) of
VP35 IID in the asymmetric unit [supporting information (SI)
Text, Table S1, and Fig. S1). PROCHECK analysis revealed that
95.2% of the residues are located in the most -favored regions
(A, B, L) of the Ramachandran plot, whereas the remaining
4.8% are in the additional allowed regions (a, b, l, p). No electron
density is observed for the first 4 residues from monomer A and
the first 2 residues from monomer B. Previous studies have

shown that full-length VP35 forms oligomers through the N-
terminal oligomerization region. However, both dynamic light-
scattering and analytical ultracentrifugation experiments dem-
onstrate that VP35 IID is monomeric in solution (Fig. S2).
Furthermore, the buried surface area between monomer A and
monomer B in the asymmetric unit is �490 Å2, indicating that
the interaction between the monomers observed in the VP35 IID
crystal is weak at best.

VP35 IID Comprises 2 Subdomains. The VP35 IID structure is
organized into 2 subdomains: an N-terminal �-helical subdo-
main and a C-terminal �-sheet subdomain (Fig. 1 B and C). The
�-helical subdomain (residues 221–283) is a 4-helical bundle
(�1–�4), arranged in 2 layers, with �1 and �2 helices packed
against �3 and �4 helices to form the core of the �-helical
subdomain. The �2 and �4 helices pack against the �-sheet
subdomain. The �-sheet subdomain (residues 294–340) is com-
posed of a 4-stranded mixed �-sheet (�1–�4) and a short helical
segment, �5. The �1 strand connects to �5 helix through a long
linker that includes a reverse turn. The �5 helix leads into a
hairpin turn, followed by the short �2 strand and the longer �3
and �4 strands. The �2–�4 strands are antiparallel whereas the
�1 strand is parallel to the �3 strand (Fig. 1B). Linker 1, which
includes Pro-292 and Pro-293 residues, connects the subdomains.
Residues between the �2 and �3 strands of VP35 IID (linker 2
and Pro-313 to Pro-318) form a left-handed polyproline Type II
helix (PPII), a feature that is not characteristic of canonical
dsRNA-binding domains (dsRBDs). The PPII helix packs
against the �3 strand and the Type I hairpin loop formed by
residues Lys-319 to Gly-323.

VP35 IID Forms a Unique Fold. The overall structure of VP35 IID
represents a unique fold for a dsRBD that is substantially
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Fig. 1. Crystal structure of VP35 C-terminal IFN-inhibitory domain (IID)
reveals a fold that binds dsRNA. (A) Domain organization of VP35. (B) Ribbon
representation of VP35 IID. Secondary structural elements that form the
�-helical subdomain (orange) and the �-sheet subdomain (yellow). (C) Topol-
ogy and delimiting sequence markers of VP35 IID.
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different from the ����� fold of canonical dsRBDs. Structural
comparisons using the DALI server revealed that the �-helical
subdomain has a topology similar to many functionally unrelated
proteins (DALI z-score �2), including thiocyanate hydrolase
and pyruvate carboxylase. However, DALI searches using either
the �-sheet subdomain or the complete VP35 IID backbone
failed to identify structurally similar or functionally related
proteins, suggesting a unique fold for a dsRNA-binding domain.
PSI-BLAST analysis of the Ebola VP35 IID sequence against the
nonredundant protein sequence database at NCBI/BLAST
(http://blast.ncbi.nlm.nih.gov/) revealed that the sequences cor-
responding to the 2 subdomains of VP35 IID are not found in
combination with other domains. The VP35 IID sequence
matches with EBOV sequences (E values from 10�70 to 10�62)
and Filoviradae family member Marburg VP35 sequences (10�39

to 10�25), whereas the nearest nonfiloviral protein has an E value
of 0.88. Our sequence analysis validates our observation that
residues within the VP35 IID are likely to form a functionally
interdependent folding unit. To further test our observation that
the �-helical and �-sheet subdomains are both important for the
overall fold and stability of VP35 IID, we generated each
subdomain and compared the backbone chemical shifts with the
wild-type VP35 IID protein using NMR spectroscopy. Resulting

1H-15N HSQC NMR spectra show significant differences be-
tween backbone chemical shifts of VP35 IID and the isolated
subdomains. In particular, we observe a collapse in chemical
shift dispersion and high-intensity peaks, indicating that the
individual subdomains are destabilized and unfolded in solution
(Fig. S3). Together, these data support the importance of both
subdomains for VP35 IID structure.

Large Hydrophobic Surface Is Buried Between 2 Structurally Interde-
pendent Subdomains in the VP35 IID. Distribution of surface elec-
trostatic charge across VP35 IID reveals that the �-helical and
�-sheet subdomains interact through nonpolar surfaces (Fig. 2 A
and B). A total area of 1,405 Å2 is buried between the 2
subdomains, and the interaction surface consists of numerous
nonbonded contacts formed by the following residues: Ala-238,
Gln-241, Leu-242, Val-245, Ile-246, Leu-249, Ile-278, Ile-280,
and Phe-287 from the �-helical subdomain and Pro-293, Ala-
306, Cys-307, Pro-315, Pro-318, Ile-320, Asp-321, Gly-323, Trp-
324, Val-325, Leu-338, and Ile-340 from the �-sheet subdomain.
Interactions between conserved Trp-324 and side chains of
Pro-315, Pro-318, and Lys-339 residues are also important to
stabilize the �-sheet subdomain structure (Fig. 2C), because
mutation of the Trp-324 residue (Trp324Ala) leads to the
complete unfolding of VP35 IID (data not shown). Furthermore,
the Ile-340 residue in strand �4 is engaged in critical contacts
with Phe-239, Leu-242, and Ile-278 that bridge the 2 subdomains.
The protein structure is severely destabilized when Ile-340 is
deleted or mutated (data not shown). It is interesting to note that
all of the residues highlighted here are 100% identical among all
known VP35 sequences from Ebola isolates and is highly con-
served in the Filoviridae family. Together, these data suggest that
Trp-324 and the surrounding hydrophobic core play crucial roles
in stabilizing the VP35 IID fold that facilitates VP35 activity.

Basic Residues Within the VP35 IID Sequence Are Highly Conserved
Among Ebola and Marburg Filoviruses. Sequence comparisons
among Ebola and Marburg viruses reveal a high level of con-
servation near the C terminus of VP35 IID, in particular among
basic residues (Fig. S4) (21). Examination of the electrostatic
surface of the VP35 IID structure shows a large distribution of
positive charge and identifies an extended central basic patch in
the �-sheet subdomain that connects Arg-305, Lys-309, Arg-312,
Lys-319, Arg-322, and Lys-339 residues (Fig. 3). Mutation of
Arg-305, Lys-309, or Arg-312 or combinations of these residues
to alanine leads to decreased IFN suppression (15, 21, 22).
Reduced IFN suppression in virally infected cells results in

Fig. 2. The surface area between the VP35 IID subdomains is hydrophobic.
(A and B) Electrostatic representations of the intersubdomain interaction
surface for the �-helical subdomain (A) and the �-sheet subdomain (B) reveal
hydrophobic surfaces buried between the 2 subdomains. Red, white, and blue
represent negative, neutral, and positive electrostatic potentials, respectively
(range �5 to �5 kT). (C) Stereographic image showing the Trp-324 side chain
making important hydrophobic contacts with residues in �4 strand, �5 helix,
and PPII. The 2Fo�Fc map is contoured at 1� (blue) and 2� (pink).

B

R305
R312K309

K319
K339

R322

A

Fig. 3. Conserved basic residues in the �-sheet domain form an extended
cluster. (A) Electrostatic representation of the solvent-exposed surface of VP35
IID. (B) Conserved basic residues important for IFN antagonism and dsRNA
binding are highlighted.

Leung et al. PNAS � January 13, 2009 � vol. 106 � no. 2 � 413

BI
O

CH
EM

IS
TR

Y

http://www.pnas.org/cgi/data/0807854106/DCSupplemental/Supplemental_PDF#nameddest=SF3
http://www.pnas.org/cgi/data/0807854106/DCSupplemental/Supplemental_PDF#nameddest=SF4


increased IRF-3 phosphorylation and nuclear localization and
leads to reduced viral growth and diminished antagonism of host
antiviral signals (15, 22). Similarly, Lys-339 is centrally located in
the basic patch near Arg-312 and is likely to impact VP35-
mediated functions such as immune inhibition. In contrast,
several other basic residues, including Arg-305, Lys-309, Lys-319,
and Arg-322, that are in proximity to each other are located on
the periphery of the central basic patch in the 3-dimesional
structure and may function in a redundant manner (Fig. 4B).
Interestingly, a second basic patch consisting of residues Lys-222,
Arg-225, Lys-248, and Lys-251 is located on the �-helical sub-
domain at the face opposite to the central charge surface of VP35
IID (compare Fig. 3A with Fig. S5A). This second basic patch is
also 100% identical among members of the Ebola viral isolates.

Conserved Basic Residues Located Near Arg-312 Are Important for
dsRNA Binding. dsRNA has long been recognized as a potent
activator of host innate immune signaling that establishes an
antiviral state (9, 10), and the ability for Ebola VP35 to block
these signals is well documented (3, 15, 16, 23, 26). Therefore, we
tested the ability of wild type and central basic patch mutants of
VP35 IID to bind heterologous dsRNA. As shown in Fig. 4A,
only the wild-type IID and not the central basic patch mutants,
including Lys309Ala, Arg312Ala, and Lys339Ala, display
dsRNA binding as indicated by a gel shift to a higher molecular
mass for the complex. These results demonstrate that the central

basic patch is likely to be part of the dsRNA-binding interface
of VP35 IID. Interestingly, Lys-319, which is located at the
periphery of the central basic patch, displayed reduced, but
measurable dsRNA binding, suggesting that Lys-319 may form
only a part of the primary dsRNA-binding surface. We further
characterized these mutations using NMR-based methods to
determine whether the observed differences in dsRNA binding
are due to global changes in structure. As shown in Fig. 4B,
wild-type and mutant VP35 IID proteins display similar 1H/15N-
HSQC NMR resonances, which indicate that the mutant pro-
teins maintain similar overall folds. Minor differences in ob-
served chemical shifts between the wild-type and mutant IID
spectra were mapped by sequential assignment of NMR spectra.
These results indicate that observed spectral differences are due
to subtle changes in the local chemical environment rather than
large structural perturbations. Therefore, mutation of residues
in the central basic patch that result in diminished dsRNA
binding are likely due to the changes in the surface electrostatic
potential of VP35 IID (Fig. S6). Sequence-independent dsRNA
binding requires specific structural constraints that can position
basic residue side chains to make specific contacts with the
phosphodiester backbone. The reduced binding we observed
upon mutation of select basic residues across the RNA-binding
patch suggests that many residues in the central basic patch
function in a nonredundant manner.

Second Conserved Basic Patch in VP35 IID Is Not Important for Direct
dsRNA Binding. The structure revealed a second basic patch that is
located on the opposite face of the VP35 IID, away from the central
RNA-binding residue cluster. We also tested the role of the second
basic patch located in the �-helical subdomain toward dsRNA
binding. Mutation of either Arg-225 (Arg225Ala) or Lys-251
(Lys251Ala) in VP35 IID did not cause significant changes in the
VP35 IID structure (data not shown). Furthermore, native gel-shift
assays demonstrate that these VP35 IID mutants retained the
ability to bind dsRNA (Fig. S5C). Therefore, it is unlikely that
residues contained in the second basic patch directly contribute to
dsRNA binding of VP35. However, examination of the surface
electrostatic distribution of the �-helical subdomain suggests that
this subdomain may play a role in additional interactions, such as
those during nucleocapsid formation or replication that require
oligomerization of VP35 (30).

Discussion
We have identified residues in Ebola VP35 that are required to
form an independently folded unit and identify regions that are
important for dsRNA binding. In the structure, we have discov-
ered 2 conserved basic patches located on the surface of VP35
IID, of which only one is important for dsRNA binding and
potentially for IFN-inhibition. In the central dsRNA-binding
patch, we highlight several conserved basic residues, including
Lys-319, Arg-322, and Lys-339, which are critical for dsRNA
binding. Location of these residues in the central basic patch
together with residues Arg-305, Lys-309, and Arg-312 suggests
that mutation of these residues may result in impaired IFN
suppression and yield attenuated viruses in vivo because of
reduced dsRNA binding.

A previous bioinformatics comparison identified a stretch of
8 residues with high sequence similarity with the influenza NS1A
protein (21). However, it was not clear whether these residues
also share structural similarities simply based on sequence and
therefore display mutually overlapping functions. Comparison of
the VP35 IID structure from the current study with that of NS1
RNA-binding domain (31, 32) reveals that the overall structures
are significantly different (Fig. 5A). Moreover, the short stretch
of residues that are highly similar between VP35 and NS1A is
incorporated into structurally distinct scaffolds (Fig. 5 A vs. B).
In VP35, the 8-residue segment is located within the �5 helix and
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�2 strand, which in influenza NS1A is incorporated entirely
within a single helix (31). NS1 proteins form obligatory dimers,
which require contacts from the RNA-binding domain. In
contrast, VP35 forms trimers through contacts at the N terminus
(ref. 20 and D.W.L. and G.K.A., unpublished observations) that
are independent of the dsRNA-binding domain. Moreover,
isolated VP35 IID protein is monomeric in solution, even at high
concentrations (Fig. S2). Despite these differences, the basic
residue side chains, which are important for RNA binding, form
similar contiguous patches (Fig. 5 A and B) (21). Altogether, this
data along with the ability of influenza NS1 and Ebola VP35 to
mutually substitute IFN-suppressive functions suggest that these
2 proteins may target similar components in the host immune
system. However, differences we observe between VP35 and
NS1 proteins in their overall structures, oligomeric states, and
the structural requirements for oligomerization, may reflect
additional functionalities performed by these proteins that fur-
ther contribute to the high virulence displayed by Ebola and
influenza viruses.

Recent studies also show that EBOV can activate antiviral
pathways that operate through RIG-I and MDA-5 to activate
IFN regulatory factor 3 (IRF-3) (15, 25) and that Ebola VP35
protein can inhibit these antiviral responses (15). Cardenas et al.
showed that VP35 may directly interact with host proteins at
points proximal to IRF-3, possibly interacting with and prevent-
ing the activation or function of the kinases IKK� and TBK-1,
which phosphorylate and activate IRF-3 (15). Furthermore,
VP35 mutants that are unable to bind dsRNA also show reduced
but appreciable suppression of IRF-3 phosphorylation and nu-
clear localization (15, 22), suggesting that IFN-inhibitory activity
of VP35 involves multiple modes. Our structure reveals that
residues critical for dsRNA binding and immune inhibition form
an extended basic patch. Mutation of these residues results in
only minor structural perturbations, yet prevents interactions
with dsRNA. Based on these observations, we now propose a
model, shown in Fig. 6, where VP35 suppresses IRF-3 activation
by dsRNA-dependent activity through direct sequestration of
dsRNA and through inhibition of the RIG-I/MDA-5 helicases.

Recent structural and biochemical analyses of RIG-I and PKR,
an RNA-dependent protein kinase, revealed that additional
modifications such as 5� triphosphate groups can play a role in
the RNA recognition by RIG-I to provide additional specificity
(11, 12). Alternatively, VP35 can suppress host immune re-
sponses through dsRNA-independent activity perhaps by direct
binding and inhibition of IRF-3 kinases (15). Our current study
suggests that both activities are likely to be mediated through
mechanisms that involve interactions with the conserved basic
patch centered on Arg-312 and therefore, any changes to resi-
dues located on this patch can lead to reduced host immune
evasion. Consistent with our model, a recent microarray analysis
showed that a recombinant EBOV containing an Arg312Ala
mutation leads to activation of antiviral responses, whereas the
wild-type virus completely shuts down host innate immune
signaling (25). Together, these studies suggest that the conserved
basic patch identified in our study can mediate multiple IFN
inhibitory mechanisms and is critical for viral replication and
pathogenesis.

Emerging and reemerging viruses such as Ebola are a signif-
icant threat to global human health, and the critical role played
by Ebola VP35 in host immune suppression is well established.
Our crystal structure of VP35 IID now provides a framework to
understand structural characteristics that promote interactions
between VP35 and dsRNA, which correlates with the ability of
Ebola VP35 to antagonize host antiviral signaling pathways.
High sequence conservation among filoviruses suggests that
VP35 proteins from other family members will likely retain
similar architecture. High-resolution structure and solution-
state NMR data from this study provide opportunities for
targeted antiviral and diagnostic drug design. The unique infor-
mation afforded by the structure of Ebola VP35 IID will also
facilitate future studies to reveal regulatory mechanisms at a key
host–viral interface.

Methods
Crystallization and Diffraction Data Collection. Initial conditions for crystalli-
zation were identified by using purified VP35 IID protein (SI Text) and a
commercial screen (Hampton Research). In-house optimized native and sel-
enomethionine crystals were grown at 25 °C by the hanging-drop vapor-
diffusion method with 17 mg/ml protein solutions diluted with 200 mM
sodium citrate (pH 5.8) and 11% (wt/vol) PEG 4000. Crystals were soaked in
reservoir solution with 25% glycerol (wt/vol) and frozen in a nitrogen stream.
Diffraction data were collected at the Advanced Light Source (beamline 4.2.2)
at 100 K (statistics are listed in Table S1).

Structure Determination and Refinement. Data were processed by using
d*TREK (33). Intensities were converted to structure factors by using the CCP4
program TRUNCATE (34). Phases were determined from a multiple-
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Fig. 5. The RNA-binding domains of Ebola VP35 and influenza NS1 proteins
are incorporated into distinct scaffolds. (A and B) Structures of the Ebola VP35
IID (this study; left) (A) and the influenza NS1A dsRNA binding domain (PDB
ID code 2ZKO) (B). (C) Similar side chains of arginine and lysine residues in the
8-residue alignment between the NS1A and VP35 protein sequences are
shown and highlighted in gray (adapted from ref. 21).
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wavelength anomalous dispersion (MAD) experiment performed on a Se-Met
substituted crystal. Phasing was performed with the SOLVE/RESOLVE program
package (35). ARP/wARP (36) was used to trace the backbone by using the
VP35 sequence, which led to an initial model with �20% of the residues
modeled as alanine. The rest of the model was constructed manually by using
XtalView (37) into an electron density map generated from MAD phases to
1.4-Å resolution by using native data. Refinement was performed against the
structure factors by using CNS (38) and REFMAC5 (39). Refinement included
simulated annealing, followed by conjugate gradient energy minimization.
Individual thermal parameters were refined after each cycle of simulated
annealing and subject to standard restraints. Water molecules were automat-
ically added by using CNS if a peak �3.0� was present in Fourier maps with
coefficients (Fobs � Fcalc)ei�calc. The contribution of bulk solvent to structure
factors was determined by CNS (default parameters). The model was further

refined by using REFMAC5 using MLKF residual function, weight matrix of
0.75, bulk solvent scaling, and individual anisotropic B-factors. The refined
model was verified by using a 2Fo�Fc map showing that all residues have
continuous electron density. Final refinement statistics are shown in Table S1.
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